The EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) is a NASA campaign to develop a predictive understanding of changes in ocean color and how they will impact the Earth’s carbon cycle. EXPORTS has completed two deployments across the North Pacific in 2018 and across the North Atlantic in 2021. Measurements were taken using autonomous underwater vehicles (AUVs), buoys, and shipborne instruments. EXPORTS was funded by the Ocean Biology and Biogeochemistry Program.
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Earth Science > Oceans > Ocean Temperature > Water Temperature
Earth Science > Oceans > Salinity/density
Generic-Atmospheric State (Gen-AtmsState) refers to non-specific instruments on a platform used for measurements of atmospheric state parameters. These are typically in situ sensors that measure temperature, pressure, humidity, and wind speed/direction. Types of atmospheric state instruments include thermometers, hygrometers, barometers, and anemometers.
Earth Science > Atmosphere > Atmospheric Water Vapor
Earth Science > Atmosphere > Atmospheric Pressure
Earth Science > Atmosphere > Atmospheric Water Vapor > Water Vapor Indicators > Humidity
Earth Science > Atmosphere > Atmospheric Temperature > Surface Temperature > Air Temperature
The Acoustic Doppler Current Profiler (ADCP) is an in situ acoustic sensor used to measure ocean currents. ADCP uses the Doppler effect to detect sound waves to provide measurements of the speed and direction of currents throughout the water column. ADCP can easily be mounted on different water platforms such as ships, buoys, and autonomous underwater vehicles (AUVs). It also can be deployed on the seafloor to provide profile measurements of ocean currents.
Gravimeters are passive sensors that measure the strength of Earth’s gravitational field. These measurements are used for determining density variations in rocks, oil and mineral prospecting, the monitoring of glacier changes, and the study of volcanic activity. Gravimeters can be used for airborne and ground-based operations.
Earth Science > Solid Earth > Gravity/gravitational Field
Earth Science > Solid Earth > Gravity/gravitational Field > Gravitational Field
Earth Science > Solid Earth > Gravity/gravitational Field > Gravity
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Earth Science > Oceans > Ocean Temperature > Water Temperature
Earth Science > Oceans > Salinity/density
Generic-Chemistry Related Sensors (Gen-Chemistry) refers to non-specific instruments on a platform used for atmospheric chemistry measurements. These are typically in situ analyzers that measure various chemical compounds such as trace gases, halocarbons, volatile organic compounds, nitrates, aerosols, and other chemical species. Measurements can include mixing ratio, composition, particle size, optical properties, and particle size distribution.
Generic-Radiometers refer to non-specific radiometers on a platform. These are typically passive microwave radiometers that measure brightness temperature. Radiometers can be used to retrieve temperature and water vapor profiles, soil moisture content, ocean salinity, precipitation and cloud properties, and vegetation.
Earth Science > Spectral/engineering > Microwave > Brightness Temperature
The Acoustic Doppler Current Profiler (ADCP) is an in situ acoustic sensor used to measure ocean currents. ADCP uses the Doppler effect to detect sound waves to provide measurements of the speed and direction of currents throughout the water column. ADCP can easily be mounted on different water platforms such as ships, buoys, and autonomous underwater vehicles (AUVs). It also can be deployed on the seafloor to provide profile measurements of ocean currents.
The PAR (Photosynthetically Active Radiation) Sensor reports the Photosynthetic Photon Flux Density (PPFD), which corresponds to micromoles of photons per meter squared per second (μmol m-2 s-1). This is the power of electromagnetic radiation in the spectral range that is used by plants for photosynthesis (400–700 nm). It features a waterproof sensor head and can be used to measure PPFD from sunlight and electric light sources. This sensor is ideal for experiments investigating photosynthesis and primary productivity and can be used in many agricultural and environmental science applications.
Generic-Chemistry Related Sensors (Gen-Chemistry) refers to non-specific instruments on a platform used for atmospheric chemistry measurements. These are typically in situ analyzers that measure various chemical compounds such as trace gases, halocarbons, volatile organic compounds, nitrates, aerosols, and other chemical species. Measurements can include mixing ratio, composition, particle size, optical properties, and particle size distribution.
The PAR (Photosynthetically Active Radiation) Sensor reports the Photosynthetic Photon Flux Density (PPFD), which corresponds to micromoles of photons per meter squared per second (μmol m-2 s-1). This is the power of electromagnetic radiation in the spectral range that is used by plants for photosynthesis (400–700 nm). It features a waterproof sensor head and can be used to measure PPFD from sunlight and electric light sources. This sensor is ideal for experiments investigating photosynthesis and primary productivity and can be used in many agricultural and environmental science applications.
Earth Science > >
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Generic-Chemistry Related Sensors (Gen-Chemistry) refers to non-specific instruments on a platform used for atmospheric chemistry measurements. These are typically in situ analyzers that measure various chemical compounds such as trace gases, halocarbons, volatile organic compounds, nitrates, aerosols, and other chemical species. Measurements can include mixing ratio, composition, particle size, optical properties, and particle size distribution.
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Generic-Atmospheric State (Gen-AtmsState) refers to non-specific instruments on a platform used for measurements of atmospheric state parameters. These are typically in situ sensors that measure temperature, pressure, humidity, and wind speed/direction. Types of atmospheric state instruments include thermometers, hygrometers, barometers, and anemometers.
Earth Science > Atmosphere > Atmospheric Water Vapor
Earth Science > Atmosphere > Atmospheric Pressure
Earth Science > Atmosphere > Atmospheric Water Vapor > Water Vapor Indicators > Humidity
Earth Science > Atmosphere > Atmospheric Temperature > Surface Temperature > Air Temperature
Generic-Chemistry Related Sensors (Gen-Chemistry) refers to non-specific instruments on a platform used for atmospheric chemistry measurements. These are typically in situ analyzers that measure various chemical compounds such as trace gases, halocarbons, volatile organic compounds, nitrates, aerosols, and other chemical species. Measurements can include mixing ratio, composition, particle size, optical properties, and particle size distribution.
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Generic-Atmospheric State (Gen-AtmsState) refers to non-specific instruments on a platform used for measurements of atmospheric state parameters. These are typically in situ sensors that measure temperature, pressure, humidity, and wind speed/direction. Types of atmospheric state instruments include thermometers, hygrometers, barometers, and anemometers.
Earth Science > Atmosphere > Atmospheric Water Vapor
Earth Science > Atmosphere > Atmospheric Pressure
Earth Science > Atmosphere > Atmospheric Water Vapor > Water Vapor Indicators > Humidity
Earth Science > Atmosphere > Atmospheric Temperature > Surface Temperature > Air Temperature
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Earth Science > Oceans > Ocean Temperature > Water Temperature
Earth Science > Oceans > Salinity/density
Generic-Chemistry Related Sensors (Gen-Chemistry) refers to non-specific instruments on a platform used for atmospheric chemistry measurements. These are typically in situ analyzers that measure various chemical compounds such as trace gases, halocarbons, volatile organic compounds, nitrates, aerosols, and other chemical species. Measurements can include mixing ratio, composition, particle size, optical properties, and particle size distribution.
Generic-Radiometers refer to non-specific radiometers on a platform. These are typically passive microwave radiometers that measure brightness temperature. Radiometers can be used to retrieve temperature and water vapor profiles, soil moisture content, ocean salinity, precipitation and cloud properties, and vegetation.
Earth Science > Spectral/engineering > Microwave > Brightness Temperature
The Compact-Optical Profiling System (C-OPS) is an in situ water-based radiometer system developed at Biospherical Instruments. It measures vertical profiles of ocean radiance and irradiance for depths of 150 to 300 m. It consists of two radiometers operating across the 250-1650 nm wavelength range. C-OPS has a typical sampling rate of 125 Hz and has a vertical resolution of less than 1 cm. It also consists of ancillary sensors that provide measurements of water temperature, pressure, and humidity.
Generic-Atmospheric State (Gen-AtmsState) refers to non-specific instruments on a platform used for measurements of atmospheric state parameters. These are typically in situ sensors that measure temperature, pressure, humidity, and wind speed/direction. Types of atmospheric state instruments include thermometers, hygrometers, barometers, and anemometers.
Earth Science > Atmosphere > Atmospheric Water Vapor
Earth Science > Atmosphere > Atmospheric Pressure
Earth Science > Atmosphere > Atmospheric Water Vapor > Water Vapor Indicators > Humidity
Earth Science > Atmosphere > Atmospheric Temperature > Surface Temperature > Air Temperature
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Earth Science > Oceans > Ocean Temperature > Water Temperature
Earth Science > Oceans > Salinity/density
Generic-Chemistry Related Sensors (Gen-Chemistry) refers to non-specific instruments on a platform used for atmospheric chemistry measurements. These are typically in situ analyzers that measure various chemical compounds such as trace gases, halocarbons, volatile organic compounds, nitrates, aerosols, and other chemical species. Measurements can include mixing ratio, composition, particle size, optical properties, and particle size distribution.
The Compact-Optical Profiling System (C-OPS) is an in situ water-based radiometer system developed at Biospherical Instruments. It measures vertical profiles of ocean radiance and irradiance for depths of 150 to 300 m. It consists of two radiometers operating across the 250-1650 nm wavelength range. C-OPS has a typical sampling rate of 125 Hz and has a vertical resolution of less than 1 cm. It also consists of ancillary sensors that provide measurements of water temperature, pressure, and humidity.
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Earth Science > Oceans > Ocean Temperature > Water Temperature
Earth Science > Oceans > Salinity/density
Generic-Chemistry Related Sensors (Gen-Chemistry) refers to non-specific instruments on a platform used for atmospheric chemistry measurements. These are typically in situ analyzers that measure various chemical compounds such as trace gases, halocarbons, volatile organic compounds, nitrates, aerosols, and other chemical species. Measurements can include mixing ratio, composition, particle size, optical properties, and particle size distribution.
The Acoustic Doppler Current Profiler (ADCP) is an in situ acoustic sensor used to measure ocean currents. ADCP uses the Doppler effect to detect sound waves to provide measurements of the speed and direction of currents throughout the water column. ADCP can easily be mounted on different water platforms such as ships, buoys, and autonomous underwater vehicles (AUVs). It also can be deployed on the seafloor to provide profile measurements of ocean currents.
Generic-Chemistry Related Sensors (Gen-Chemistry) refers to non-specific instruments on a platform used for atmospheric chemistry measurements. These are typically in situ analyzers that measure various chemical compounds such as trace gases, halocarbons, volatile organic compounds, nitrates, aerosols, and other chemical species. Measurements can include mixing ratio, composition, particle size, optical properties, and particle size distribution.
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth