The Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) campaign aimed to study the impact of climate change on the biogeochemistry and ecology of the Chukchi and Beaufort seas. ICESCAPE had two deployments in 2010 and 2011 during the boreal summer. A ship and ice stations were utilized to measure ice properties and morphology. ICESCAPE was part of the Ocean Biology and Biogeochemistry and Cryosphere programs.
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Earth Science > Oceans > Ocean Temperature > Water Temperature
Earth Science > Oceans > Salinity/density
Generic-Atmospheric State (Gen-AtmsState) refers to non-specific instruments on a platform used for measurements of atmospheric state parameters. These are typically in situ sensors that measure temperature, pressure, humidity, and wind speed/direction. Types of atmospheric state instruments include thermometers, hygrometers, barometers, and anemometers.
Earth Science > Atmosphere > Atmospheric Water Vapor
Earth Science > Atmosphere > Atmospheric Pressure
Earth Science > Atmosphere > Atmospheric Water Vapor > Water Vapor Indicators > Humidity
Earth Science > Atmosphere > Atmospheric Temperature > Surface Temperature > Air Temperature
Generic-Chemistry Related Sensors (Gen-Chemistry) refers to non-specific instruments on a platform used for atmospheric chemistry measurements. These are typically in situ analyzers that measure various chemical compounds such as trace gases, halocarbons, volatile organic compounds, nitrates, aerosols, and other chemical species. Measurements can include mixing ratio, composition, particle size, optical properties, and particle size distribution.
The Acoustic Doppler Current Profiler (ADCP) is an in situ acoustic sensor used to measure ocean currents. ADCP uses the Doppler effect to detect sound waves to provide measurements of the speed and direction of currents throughout the water column. ADCP can easily be mounted on different water platforms such as ships, buoys, and autonomous underwater vehicles (AUVs). It also can be deployed on the seafloor to provide profile measurements of ocean currents.
Fluorometers are water-based sensors that measure patterns of fluorescence. They provide measurements of chlorophyll-a fluorescence, optical backscatter, and colored dissolved organic matter (CDOM) in seawater. They are typical used to asses chlorophyll concentrations to determine phytoplankton concentrations in the ocean. Fluorometers can be deployed on research vessels, buoys, autonomous underwater vehicles, and other water-based platforms.
The PAR (Photosynthetically Active Radiation) Sensor reports the Photosynthetic Photon Flux Density (PPFD), which corresponds to micromoles of photons per meter squared per second (μmol m-2 s-1). This is the power of electromagnetic radiation in the spectral range that is used by plants for photosynthesis (400–700 nm). It features a waterproof sensor head and can be used to measure PPFD from sunlight and electric light sources. This sensor is ideal for experiments investigating photosynthesis and primary productivity and can be used in many agricultural and environmental science applications.
Earth Science > >
Spectrophotometers are passive photometers that measure the light intensity of the sample solution as a function of the wavelength of the electromagnetic radiation. Spectrophotometers are typically used for ground-based or shipborne observations. They can operate either in the ultraviolet to visible (185-700 nm) spectral range or the infrared (700-15000 nm) range. They are typically used in vegetation studies, air pollution monitoring, and water and soil quality analysis.
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Generic-Chemistry Related Sensors (Gen-Chemistry) refers to non-specific instruments on a platform used for atmospheric chemistry measurements. These are typically in situ analyzers that measure various chemical compounds such as trace gases, halocarbons, volatile organic compounds, nitrates, aerosols, and other chemical species. Measurements can include mixing ratio, composition, particle size, optical properties, and particle size distribution.
Conductivity, Temperature, and Depth (CTD) sensors are in situ instrument packages that are used to measure water depth, pressure, salinity, temperature, and density in the ocean. CTD sensors can be deployed on various water-based platforms such as autonomous underwater vehicles (AUVs), buoys, gliders, or research vessels. When deployed on a vessel, CTD sensors are typically attached to a rosette and then lowered to the seafloor to measure water properties. CTD sensors have a typical sampling rate of 30 Hz and can collect precise measurements for a specific water depth depending on the researcher's needs.
Earth Science > Oceans > Ocean Pressure > Water Pressure
Earth Science > Oceans > Bathymetry/seafloor Topography > Water Depth
Earth Science > Oceans > Ocean Temperature > Water Temperature
Earth Science > Oceans > Salinity/density
Salinometers are in situ instruments used to measure the salinity of water. Most salinometers measure salinity by detecting the electrical conductivity of the water sample. They are easily portable and provide continuous, real-time, precise measurements of salinity. Salinometers are used for oceanography research, water quality management, and industrial processes.
Generic-Atmospheric State (Gen-AtmsState) refers to non-specific instruments on a platform used for measurements of atmospheric state parameters. These are typically in situ sensors that measure temperature, pressure, humidity, and wind speed/direction. Types of atmospheric state instruments include thermometers, hygrometers, barometers, and anemometers.
Earth Science > Atmosphere > Atmospheric Water Vapor
Earth Science > Atmosphere > Atmospheric Pressure
Earth Science > Atmosphere > Atmospheric Water Vapor > Water Vapor Indicators > Humidity
Earth Science > Atmosphere > Atmospheric Temperature > Surface Temperature > Air Temperature